28 research outputs found

    Noise analysis of single-qumode Gaussian operations using continuous-variable cluster states

    Get PDF
    We consider measurement-based quantum computation that uses scalable continuous-variable cluster states with a one-dimensional topology. The physical resource, known here as the dual-rail quantum wire, can be generated using temporally multiplexed offline squeezing and linear optics or by using a single optical parametric oscillator. We focus on an important class of quantum gates, specifically Gaussian unitaries that act on single modes, which gives universal quantum computation when supplemented with multi-mode operations and photon-counting measurements. The dual-rail wire supports two routes for applying single-qumode Gaussian unitaries: the first is to use traditional one-dimensional quantum-wire cluster-state measurement protocols. The second takes advantage of the dual-rail quantum wire in order to apply unitaries by measuring pairs of qumodes called macronodes. We analyze and compare these methods in terms of the suitability for implementing single-qumode Gaussian measurement-based quantum computation.Comment: 25 pages, 9 figures, more accessible to general audienc

    Demonstration of unconditional one-way quantum computations for continuous variables

    Full text link
    Quantum computing promises to exploit the laws of quantum mechanics for processing information in ways fundamentally different from today's classical computers, leading to unprecedented efficiency. One-way quantum computation, sometimes referred to as the cluster model of quantum computation, is a very promising approach to fulfil the capabilities of quantum information processing. The cluster model is realizable through measurements on a highly entangled cluster state with no need for controlled unitary evolutions. Here we demonstrate unconditional one-way quantum computation experiments for continuous variables using a linear cluster state of four entangled optical modes. We implement an important set of quantum operations, linear transformations, in the optical phase space through one-way computation. Though not sufficient, these are necessary for universal quantum computation over continuous variables, and in our scheme, in principle, any such linear transformation can be unconditionally and deterministically applied to arbitrary single-mode quantum states.Comment: 9 pages, 3 figure

    Violation of Bells inequality using continuous variable measurements

    Get PDF
    A Bell inequality is a fundamental test to rule out local hidden variable model descriptions of correlations between two physically separated systems. There have been a number of experiments in which a Bell inequality has been violated using discrete-variable systems. We demonstrate a violation of Bells inequality using continuous variable quadrature measurements. By creating a four-mode entangled state with homodyne detection, we recorded a clear violation with a Bell value of B=2.31±0.02B = 2.31 \pm 0.02. This opens new possibilities for using continuous variable states for device independent quantum protocols.Comment: 5 pages, 4 figures, lette

    Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution

    Get PDF
    Nonlocal correlations, a longstanding foundational topic in quantum information, have recently found application as a resource for cryptographic tasks where not all devices are trusted, for example in settings with a highly secure central hub, such as a bank or government department, and less secure satellite stations which are inherently more vulnerable to hardware "hacking" attacks. The asymmetric phenomena of Einstein-Podolsky-Rosen steering plays a key role in one-sided device-independent quantum key distribution (1sDI-QKD) protocols. In the context of continuous-variable (CV) QKD schemes utilizing Gaussian states and measurements, we identify all protocols that can be 1sDI and their maximum loss tolerance. Surprisingly, this includes a protocol that uses only coherent states. We also establish a direct link between the relevant EPR steering inequality and the secret key rate, further strengthening the relationship between these asymmetric notions of nonlocality and device independence. We experimentally implement both entanglement-based and coherent-state protocols, and measure the correlations necessary for 1sDI key distribution up to an applied loss equivalent to 7.5 km and 3.5 km of optical fiber transmission respectively. We also engage in detailed modelling to understand the limits of our current experiment and the potential for further improvements. The new protocols we uncover apply the cheap and efficient hardware of CVQKD systems in a significantly more secure setting.Comment: Addition of experimental results and (several) new author

    Optimal Location of Two Laser-interferometric Detectors for Gravitational Wave Backgrounds at 100 MHz

    Full text link
    Recently, observational searches for gravitational wave background (GWB) have been developed and given constraints on the energy density of GWB in a broad range of frequencies. These constraints have already resulted in the rejection of some theoretical models of relatively large GWB spectra. However, at 100 MHz, there is no strict upper limit from direct observation, though an indirect limit exists due to He4 abundance due to big-bang nucleosynthesis. In our previous paper, we investigated the detector designs that can effectively respond to GW at high frequencies, where the wavelength of GW is comparable to the size of a detector, and found that the configuration, a so-called synchronous-recycling interferometer is best at these sensitivity. In this paper, we investigated the optimal location of two synchronous-recycling interferometers and derived their cross-correlation sensitivity to GWB. We found that the sensitivity is nearly optimized and hardly changed if two coaligned detectors are located within a range 0.2 m, and that the sensitivity achievable in an experiment is far below compared with the constraint previously obtained in experiments.Comment: 17 pages, 6 figure

    Theory and Applications of Non-Relativistic and Relativistic Turbulent Reconnection

    Full text link
    Realistic astrophysical environments are turbulent due to the extremely high Reynolds numbers. Therefore, the theories of reconnection intended for describing astrophysical reconnection should not ignore the effects of turbulence on magnetic reconnection. Turbulence is known to change the nature of many physical processes dramatically and in this review we claim that magnetic reconnection is not an exception. We stress that not only astrophysical turbulence is ubiquitous, but also magnetic reconnection itself induces turbulence. Thus turbulence must be accounted for in any realistic astrophysical reconnection setup. We argue that due to the similarities of MHD turbulence in relativistic and non-relativistic cases the theory of magnetic reconnection developed for the non-relativistic case can be extended to the relativistic case and we provide numerical simulations that support this conjecture. We also provide quantitative comparisons of the theoretical predictions and results of numerical experiments, including the situations when turbulent reconnection is self-driven, i.e. the turbulence in the system is generated by the reconnection process itself. We show how turbulent reconnection entails the violation of magnetic flux freezing, the conclusion that has really far reaching consequences for many realistically turbulent astrophysical environments. In addition, we consider observational testing of turbulent reconnection as well as numerous implications of the theory. The former includes the Sun and solar wind reconnection, while the latter include the process of reconnection diffusion induced by turbulent reconnection, the acceleration of energetic particles, bursts of turbulent reconnection related to black hole sources as well as gamma ray bursts. Finally, we explain why turbulent reconnection cannot be explained by turbulent resistivity or derived through the mean field approach.Comment: 66 pages, 24 figures, a chapter of the book "Magnetic Reconnection - Concepts and Applications", editors W. Gonzalez, E. N. Parke

    The Hyper Suprime-Cam SSP survey: Overview and survey design

    Get PDF
    Hyper Suprime-Cam (HSC) is a wide-field imaging camera on the prime focus of the 8.2-m Subaru telescope on the summit of Mauna Kea in Hawaii. A team of scientists from Japan, Taiwan, and Princeton University is using HSC to carry out a 300-night multi-band imaging survey of the high-latitude sky. The survey includes three layers: the Wide layer will cover 1400 deg2 in five broad bands (grizy), with a 5 σ point-source depth of r ≈ 26. The Deep layer covers a total of 26 deg2 in four fields, going roughly a magnitude fainter, while the UltraDeep layer goes almost a magnitude fainter still in two pointings of HSC (a total of 3.5 deg2). Here we describe the instrument, the science goals of the survey, and the survey strategy and data processing. This paper serves as an introduction to a special issue of the Publications of the Astronomical Society of Japan, which includes a large number of technical and scientific papers describing results from the early phases of this survey
    corecore